skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Shuangbao Paul"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This article presents a novel network protocol that incorporates a quantum photonic channel for symmetric key distribution, a Dilithium signature to replace factor-based public key cryptography for enhanced authentication, security, and privacy. The protocol uses strong hash functions to hash original messages and verify heightened data integrity at the destination. This Quantum good authentication protocol (QGP) provides high-level security provided by the theory of quantum mechanics. QGP also has the advantage of quantum-resistant data protection that prevents current digital computer and future quantum computer attacks. QGP transforms the transmission control protocol/internet protocol (TCP/IP) by adding a quantum layer at the bottom of the Open Systems Interconnection (OSI) model (layer 0) and modifying the top layer (layer 7) with Dilithium signatures, thus improving the security of the original OSI model. In addition, QGP incorporates strong encryption, hardware-based quantum channels, post-quantum signatures, and secure hash algorithms over a platform of decryptors, switches, routers, and network controllers to form a testbed of the next-generation, secure quantum internet. The experiments presented here show that QGP provides secure authentication and improved security and privacy and can be adopted as a new protocol for the next-generation quantum internet. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  2. null (Ed.)
    The paradigm of quantum computation has led to the development of new algorithms as well variations on existing algorithms. In particular, novel cryptographic techniques based upon quantum computation are of great interest. Many classical encryption techniques naturally translate into the quantum paradigm because of their well-structured factorizations and the fact that they can be phased in the form of unitary operators. In this work, we demonstrate a quantum approach to data encryption and decryption based upon the McEliece cryptosystem using Reed-Muller codes. This example is of particular interest given that post-quantum analyses have highlighted this system as being robust against quantum attacks. Finally, in anticipation of quantum computation operating over binary fields, we discuss alternative operator factorizations for the proposed cryptosystem. 
    more » « less
  3. null (Ed.)
    This paper discusses quantum computing with a strong focus on quantum software, quantum networks, quantum simulation, and applications. The study on quantum speedups reveals fundamental differences between quantum algorithms and classical algorithms. As a case study, further improvement on Shor’s algorithm is presented with experimental results. The study shows that quantum circuits can be generated automatically to further improve the efficiency of quantum algorithms. 
    more » « less